
ar
X

iv
:h

ep
-p

h/
02

11
06

7 
v3

   
16

 D
ec

 2
00

2

THE STANDARD MODEL

AND THE TOP QUARK

Scott Willenbrock
Physics Department

University of Illinois at Urbana-Champaign

1110 W. Green St., Urbana, IL 61801

willen@uiuc.edu

Abstract

The top quark is one of the least well-studied components of the
standard model. In these lectures I discuss the expected properties of
the top quark, which will be tested at the Fermilab Tevatron and the
CERN Large Hadron Collider. I begin with a modern review of the
standard model, emphasizing the underlying concepts. I then discuss
the role the top quark plays in precision electroweak analyses. The last
two lectures address the strong and weak interactions of the top quark,
with an emphasis on the top-quark spin.

The top quark is the least well-studied of the quarks. Why is the top
quark an interesting and worthwhile object to study? Here are four of
the most compelling reasons:

A more accurate measurement of the top-quark mass is valuable
as an input to precision electroweak analyses.

We would like to know if the top quark is just an ordinary quark,
or if it is exotic in some way.

The top quark may be useful to discover new particles. For ex-
ample, of all the fermions, the Higgs boson couples most strongly
to the top quark. It might be possible to observe the Higgs boson
produced in association with a tt̄ pair.

Events containing top quarks are backgrounds to new physics that
we hope to discover. This may sound mundane, but it is extremely
important. For example, the discovery of the top quark itself was
only possible once we understood the background from W+jets.



Although these lectures are principally about the top quark, I have
chosen to broaden them to include a review of the standard model. The
top quark is very much a part of the standard model, and it is useful to
discuss the physics of the top quark from that perspective. The physics
of the top quark is a vast subject, and cannot be covered in a few lectures.
Instead, I have chosen several subjects of broad interest related to the
top quark, and discuss them in some depth, with an emphasis on the
underlying concepts. I have also included several exercises with each
lecture, which I strongly urge you to perform. They will engage you
with the material in a way that will help solidify your understanding.
The exercises can be performed using only material contained in these
lectures. The exercises are of various levels of difficulty, indicated by ∗
(easy), ∗∗ (moderate), and ∗ ∗ ∗ (hard). Solutions are provided in an
appendix.

The first lecture is a review of the standard model from a modern
point of view. It assumes the reader already has some familiarity with
the standard model, and concentrates on the concepts that underlie
the theory. The second lecture discusses the role the top quark plays
in precision electroweak analyses via one-loop processes. The third and
fourth lectures discuss the strong and weak interactions of the top quark,
respectively, with an emphasis on the top-quark spin.

1. The Standard Model

In Table 1 I list the fermion fields that make up the standard model,
along with their SU(3)× SU(2)×U(1)Y quantum numbers. The index
i = 1, 2, 3 on each field refers to the generation, and the subscript L,R
refers to the chirality of the field (ψL,R ≡ 1

2(1 ∓ γ5)ψ). The left-chiral
and right-chiral fields corresponding to a given particle have different
SU(2) × U(1) quantum numbers, which leads to parity violation in the
weak interaction.

Let’s break the Lagrangian of the standard model into pieces. First
consider the pure gauge interactions, given by

LGauge =
1

2g2
S

Tr GµνGµν +
1

2g2
Tr W µνWµν − 1

4
BµνBµν , (1)

where Gµν is the field-strength tensor of the gluon field, W µν is that
of the weak-boson field, and Bµν is that of the hypercharge-boson field.
These terms contain the kinetic energy of the gauge bosons and their self
interactions. Next comes the gauge interactions of the fermion (“mat-
ter”) fields,

LMatter = iQ̄i
L 6DQi

L + iūi
R 6Dui

R + id̄i
R 6Ddi

R + iL̄i
L 6DLi

L + iēiR 6DeiR , (2)



Table 1. The fermion fields of the standard model and their gauge quantum numbers.

SU(3) SU(2) U(1)Y

Qi
L =

(

uL

dL

) (

cL

sL

) (

tL

bL

)

3 2 1

6

ui
R = uR cR tR 3 1 2

3

di
R = dR sR bR 3 1 − 1

3

Li
L =

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

1 2 − 1

2

ei
R = eR µR τR 1 1 −1

These terms contain the kinetic energy and gauge interactions of the
fermions, which depend on the fermion quantum numbers. For example,

6DQL = γµ(∂µ + igSGµ + igWµ + i
1

6
g′Bµ)QL (3)

since the field QL participates in all three gauge interactions. A sum
on the index i, which represents the generation, is implied in the La-
grangian.

We have constructed the simplest and most general Lagrangian, given
the fermion fields and gauge symmetries.1 The gauge symmetries forbid
masses for any of the particles. In the case of the fermions, masses are
forbidden by the fact that the left-chiral and right-chiral components of
a given fermion field have different SU(2) × U(1)Y quantum numbers.
For example, a mass term for the up quark,

L = −mūLuR + h.c. , (4)

is forbidden by the fact that uL is part of the SU(2) doublet QL, so such
a term violates the SU(2) gauge symmetry (it also violates U(1)Y ).

Although we only imposed the gauge symmetry on the Lagrangian, it
turns out that it has a good deal of global symmetry as well, associated
with the three generations. Because all fermions are massless thus far in
our analysis, there is no difference between the three generations - they
are physically indistinguishable. This manifests itself as a global flavor

1I will give a precise definition to “simplest” later in this lecture. For now, it means the
minimum number of fields and derivatives are used in each term in the Lagrangian.



symmetry of the matter Lagrangian, Eq. (2), which is invariant under
the transformations

Qi
L → U ij

QL
Qj

L

ui
R → U ij

uR
uj

R

di
R → U ij

dR
dj

R

Li
L → U ij

LL
Lj

L

eiR → U ij
eR
ejR , (5)

where each U is an arbitrary 3 × 3 unitary matrix.

Exercise 1.1 (∗) Show this.

Since there are five independent U(3) symmetries, the global flavor sym-
metry of the Lagrangian is [U(3)]5.

The Lagrangian thus far contains only three parameters, the couplings
of the three gauge interactions. Their approximate values (evaluated at
MZ) are

gS ≈ 1

g ≈ 2

3

g′ ≈ 2

3
√

3
.

These couplings are all of order unity.
Electroweak symmetry breaking – The theory thus far is very simple

and elegant, but it is incomplete - all particles are massless. We now turn
to electroweak symmetry breaking, which is responsible for generating
the masses of the gauge bosons and fermions.

In the standard model, electroweak symmetry breaking is achieved
by introducing another field into the model, the Higgs field φ, with the
quantum numbers shown in Table 2. The simplest and most general
Lagrangian for the Higgs field, consistent with the gauge symmetry, is

LHiggs = (Dµφ)†Dµφ+ µ2φ†φ− λ(φ†φ)2 . (6)

Table 2. The Higgs field and its gauge quantum numbers.

SU(3) SU(2) U(1)Y

φ =

(

φ+

φ0

)

1 2 1

2



Figure 1. The Higgs potential. The neutral component of the Higgs field acquires a
vacuum-expectation value 〈φ0〉 = v/

√
2 on the circle of minima in Higgs-field space.

The first term contains the Higgs-field kinetic energy and gauge inter-
actions. The remaining terms are (the negative of) the Higgs potential,
shown in Fig. 1. The quadratic term in the potential has been chosen
such that the minimum of the potential lies not at zero, but on a circle
of minima

〈φ0〉 = µ/
√

2λ ≡ v√
2

(7)

where φ0 is the lower (neutral) component of the Higgs doublet field.
This equation defines the parameter v ≈ 246 GeV, the Higgs-field vac-
uum-expectation value. Making the substitution φ = (0, v/

√
2) in the

Higgs Lagrangian, Eq. (6), one finds that the W and Z bosons have
acquired masses

MW =
1

2
gv MZ =

1

2

√

g2 + g′2 v (8)

from the interaction of the gauge bosons with the Higgs field. Since we
know g and g′, these equations determine the numerical value of v.

The Higgs sector of the theory, Eq. (6), introduces just two new pa-
rameters, µ and λ. Rather than µ, we will use the parameter v intro-
duced in Eq. (7). The parameter λ is the Higgs-field self interaction,
and will not figure into our discussion.

Fermion masses and mixing – In quantum field theory, anything that
is not forbidden is mandatory. With that in mind, there is one more set
of interactions, involving the Higgs field and the fermions. The simplest
and most general Lagrangian, consistent with the gauge symmetry, is

LY ukawa = −Γij
u Q̄

i
Lεφ

∗uj
R − Γij

d Q̄
i
Lφd

j
R − Γij

e L̄
i
Lφe

j
R + h.c. (9)



where Γu,Γd,Γe are 3 × 3 complex matrices in generation space.2 We
have therefore apparently introduced 3× 3× 3× 2 = 54 new parameters
into the theory, but as we shall see, only a subset of these parameters
are physically relevant. These so-called Yukawa interactions of the Higgs
field with fermions violate almost all of the [U(3)]5 global symmetry
of the fermion gauge interactions, Eq. (2). The only remaining global
symmetries are the subset corresponding to baryon number

Qi
L → eiθ/3Qi

L

ui
R → eiθ/3ui

R

di
R → eiθ/3di

R (10)

and lepton number

Li
L → eiφLi

L

eiR → eiφeiR . (11)

Exercise 1.2 (∗) Show this.

The conservation of baryon number and lepton number follow from
these symmetries. These symmetries are accidental; they are not put
in by hand, but rather follow automatically from the field content and
gauge symmetries of the theory. Thus we can say that we understand
why baryon number and lepton number are conserved in the standard
model.

Replacing the Higgs field with its vacuum-expectation value, φ =
(0, v/

√
2), in Eq. (9) yields

LM = −M ij
u ū

i
Lu

j
R −M ij

d d̄
i
Ld

j
R −M ij

e ē
i
Le

j
R + h.c. , (12)

where
M ij = Γij v√

2
(13)

are fermion mass matrices. The Yukawa interactions are therefore re-
sponsible for providing the charged fermions with mass; the neutrinos,
however, remain massless (we will discuss neutrino masses shortly).

The complete Lagrangian of the standard model is the sum of the
gauge, matter, Higgs, and Yukawa interactions,

LSM = LGauge + LMatter + LHiggs + LY ukawa . (14)

2The matrix ε =

(

0 1
−1 0

)

in SU(2) space is needed in order for the first term in Eq. (9)

to respect SU(2) gauge invariance.



This is the simplest and most general Lagrangian, given the field content
and gauge symmetries of the standard model.

Given this Lagrangian, one can proceed to calculate any physical pro-
cess of interest. However, it is convenient to first perform field redefini-
tions to make the physical content of the theory manifest. These field
redefinitions do not change the predictions of the theory; they are anal-
ogous to a change of variables when performing an integration. To make
the masses of the fermions manifest, we perform unitary field redefini-
tions on the fields in order to diagonalize the mass matrices in Eq. (12):

ui
L = Aij

uL
u′jL ui

R = Aij
uR
u′jR

di
L = Aij

dL
d′jL di

R = Aij
dR
d′jR

eiL = Aij
eL
e′jL eiR = Aij

eR
e′jR

νi
L = Aij

νL
ν ′jL (15)

Exercise 1.3 (∗) Show that each matrix A must be unitary in order to
preserve the form of the kinetic-energy terms in the matter Lagrangian,
Eq. (2), e.g.

LKE = iūi
L 6∂ui

L . (16)

Once the mass matrices are diagonalized, the masses of the fermions
are manifest. These transformations also diagonalize the Yukawa matri-
ces Γ, since they are proportional to the mass matrices [see Eq. (13)].
However, we must consider what impact these field redefinitions have on
the rest of the Lagrangian. They have no effect on the pure gauge or
Higgs parts of the Lagrangian, Eqs. (1) and (6), which are independent
of the fermion fields. They do impact the matter part of the Lagrangian,
Eq. (2). However, a subset of these field redefinitions is the global [U(3)]5

symmetry of the matter Lagrangian; this subset therefore has no impact.
One can count how many physically-relevant parameters remain after

the field redefinitions are performed [1]. Let’s concentrate on the quark
sector. The number of parameters contained in the complex matrices
Γu,Γd is 2× 3× 3× 2 = 36. The unitary symmetries UQL

, UuR
, UdR

are
a subset of the quark field redefinitions; this subset will not affect the
matter part of the Lagrangian. There are 3×3×3 degrees of freedom in
these symmetries (a unitary N ×N matrix has N2 free parameters), so
the total number of parameters that remain in the full Lagrangian after
field redefinitions is

2 × 3 × 3 × 2 − (3 × 3 × 3 − 1) = 10 (17)

where I have subtracted baryon number from the subset of field redefi-
nitions that are symmetries of the matter Lagrangian. Baryon number



is a symmetry of the Yukawa Lagrangian, Eq. (9), and hence cannot be
used to diagonalize the mass matrices.

Exercise 1.4 (∗) Show that the quark field redefinitions are the symme-
tries UQL

, UuR
, UdR

if AuL
= AdL

.

The ten remaining parameters correspond to the six quark masses and
the four parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
(three mixing angles and one CP -violating phase). The CKM matrix is

V ≡ A†
dL
AuL

; we see that this matrix is unity if AuL
= AdL

, as expected
from Exercise 1.4.

Exercise 1.5 (∗) Show that V is unitary.

The mass matrices are related to the Yukawa matrices by Eq. (13). If
we make the natural assumption that the Yukawa matrices contain ele-
ments of order unity (like the gauge couplings), we expect the fermion
masses to be of O(v), just like MW and MZ [see Eq. (8)]. This is not
the case; only the top quark has such a large mass. We see that, from
the point of view of the standard model, the question is not why the top
quark is so heavy, but rather why the other fermions are so light.

Similarly, for a generic Yukawa matrix, one expects the field redefi-
nitions that diagonalize the mass matrices to yield a CKM matrix with
large mixing angles. Again, this is not the case; the measured angles are
[2]

θ12 ≈ 13◦

θ23 ≈ 2.3◦

θ13 ≈ 0.23◦

δ ≈ 60◦

which, with the exception of the CP -violating phase δ, are small.3 The
question is not why these angles are nonzero, but rather why they are
so small.

The fermion masses and mixing angles strongly suggest that there is
a deeper structure underlying the Yukawa sector of the standard model.
Surely there is some explanation of the peculiar pattern of fermion
masses and mixing angles. Since the standard model can accommo-
date any masses and mixing angles, we must seek an explanation from
physics beyond the standard model.

Beyond the Standard Model – Let us back up and ask: why did we
stick to the simplest terms in the Lagrangian? The obsolete answer is

3The phase δ is the same as the angle γ of the so-called unitarity triangle.



that these are the renormalizable terms. Renormalizability is a stronger
constraint than is really necessary. The modern answer, which is much
simpler, is dimensional analysis [3].

We’ll work with units such that h̄ = c = 1.

Exercise 1.6 (∗) - Show that length has units of mass−1, and hence ∂µ =
∂/∂xµ has units of mass.

Since the action has units of h̄ = 1, the Lagrangian must have units of
mass4, since

S =

∫

d4x L . (18)

From the kinetic energy terms in the Lagrangian for a generic scalar (φ),
fermion (ψ), and gauge boson (Aµ),

LKE = ∂µφ∗∂µφ+ iψ̄ 6∂ψ − 1

2
(∂µAν∂µAν + ∂µAν∂νAµ) (19)

we can deduce the dimensionality of the various fields:

dim φ = mass

dim ψ = mass3/2

dim Aµ = mass .

All operators (products of fields) in the Lagrangian of the Standard
Model are of dimension four, except the operator φ†φ in the Higgs po-
tential, which is of dimension two. The coefficient of this term, µ2, is the
only dimensionful parameter in the standard model; it (or, equivalently,
v ≡ µ/

√
λ) sets the scale of all particle masses.

Imagine that the Lagrangian at the weak scale is an expansion in some
large mass scale M ,

L = LSM +
1

M
dim 5 +

1

M2
dim 6 + · · · , (20)

where dim n represents all operators of dimension n. By dimensional
analysis, the coefficient of an operator of dimension n has dimension
mass4−n, since the Lagrangian has dimension mass4. At energies much
less thanM , the dominant terms in this Lagrangian will be those of LSM ;
the other terms are suppressed by an inverse power of M . This is the
modern reason why we believe the “simplest” terms in the Lagrangian
are the dominant ones.

The least suppressed terms in the Lagrangian beyond the standard
model are of dimension five. We should therefore expect our first obser-
vation of physics beyond the standard model to come from these terms.



Given the field content and gauge symmetries of the standard model,
there is only one such term:

L5 =
cij

M
LiT

L εφCφ
T εLj

L + h.c. , (21)

where cij is a dimensionless matrix in generation space.4

Exercise 1.7 (∗∗) - Show that a similar term, with LL replaced by QL,
is forbidden by SU(3) × U(1)Y gauge symmetry.

This dimension-five operator contains the Higgs-doublet field twice and
the lepton-doublet field twice.

Exercise 1.8 (∗) - Show that L5 violates lepton number.

Replacing the Higgs-doublet field with its vacuum-expectation value,
φ = (0, v/

√
2), yields

L5 = −c
ij

2

v2

M
νiT

L Cνj
L + h.c. . (22)

This is a Majorana mass term for the neutrinos. The recent observation
of neutrino oscillations, which requires nonzero neutrino mass, is indeed
our first observation of physics beyond the standard model.

Exercise 1.9 (∗∗∗) Show that the Maki-Nakagawa-Sakata (MNS) matrix
(the analogue of the CKM matrix in the lepton sector) has 6 physically-
relevant parameters. (Note: cij is a complex, symmetric matrix.)

The moral is that when we are searching for deviations from the stan-
dard model, what we are really doing is looking for the effects of higher-
dimension operators. Although there is only one operator of dimension
five, there are dozens of operators of dimension six, some of which are
listed below [4]:

L̄iγµLjL̄kγµL
m

L̄iγµLjQ̄kγµQ
m

iQ̄iγµDνG
µνQj

Tr GµνGνρG
ρ
µ

φ†φTr W µνWµν

φ†Dµφē
i
Rγ

µejR .

4The 2 × 2 matrix ε in SU(2) space was introduced in an earlier footnote. The 4 × 4 matrix

C =

(

−ε 0
0 ε

)

in Dirac space is needed for Lorentz invariance.



Thus far, none of the effects of any of these operators have been ob-
served. The best we can do is set lower bounds on M (assuming some
dimensionless coefficient). These lower bounds range from 1 TeV to 1016

GeV, depending on the operator. As we explore nature at higher energy
and with higher accuracy, we hope to begin to see the effects of some of
these dimension-six operators.

The mass scale M corresponds to the mass of a particle that is too
heavy to observe directly. At energies greater than M , the expansion of
Eq. (20) is no longer useful, as each successive term is larger than the
previous. Instead, one must explicitly add the new field of massM to the
model. For example, if nature is supersymmetric at the weak scale, one
must add the superpartners of the standard-model fields to the theory
and include their interactions in the Lagrangian. If we raise the mass
scale of the superpartners to be much greater than the weak scale, then
we can no longer directly observe the superpartners, and we return to a
description in terms of standard-model fields, with an expansion of the
Lagrangian in inverse powers of the mass scale of the superpartners, M .

2. Virtual Top Quark

The top quark plays an important role in precision electroweak anal-
yses. In this lecture I hope to clarify this sometimes confusing subject.

Recall from the previous lecture that the gauge, matter, and Higgs
sectors of the standard model depend on only five parameters: the three
gauge couplings, gS , g, g′, and the Higgs-field vacuum-expectation value
and self interaction, v and λ. At tree level, all electroweak quantities
depend on just three of these parameters, g, g′, and v. We use the three
best-measured electroweak quantities to determine these three parame-
ters at tree level:

α =
1

4π

g2g′2

g2 + g′2
=

1

137.03599976(50)

GF =
1√
2v2

= 1.16637(1) × 10−5 GeV−2

MZ =
1

2

√

g2 + g′2 v = 91.1876(21) GeV ,

where the uncertainty is given in parentheses. The value of α is extracted
from low-energy experiments, GF is extracted from the muon lifetime,
and MZ is measured from e+e− annihilation near the Z mass. From
these three quantities, we can predict all other electroweak quantities at



tree level. For example, the W mass is

M2
W =

1

4
g2v2 =

1

2
M2

Z

(

1 +

√

1 − 4πα√
2GFM

2
Z

)

. (23)

Exercise 2.1 (∗) Verify the expression for MW in terms of α, GF , and
MZ .

A more civilized expression for MW is obtained by defining

s2W ≡ 1 − M2
W

M2
Z

. (24)

This is the so-called “on-shell” definition5 of sin2 θW ; it has a numerical
value of s2W = 0.2228(4). Using this parameter, we can write a simpler
expression than Eq. (23) for MW at tree level:

M2
W =

πα√
2GF

s2W
. (25)

Exercise 2.2 (∗) - Verify this equation.

At one loop this expression is modified:

M2
W =

πα√
2GF

s2W (1 − ∆r)
, (26)

where ∆r contains the one-loop corrections. The top quark makes a
contribution to ∆r via the one-loop diagrams shown in Fig. 2, which
contribute to the W and Z masses:

(∆r)top ≈ −3GFm
2
t

8
√

2π2

1

t2W
, (27)

5So called because it is defined in terms of physical, or “on shell,” quantities.

W W

t

b

Z Z

t

t

Figure 2. Virtual top-quark loops contribute to the W and Z masses.



h

+

h

Figure 3. Virtual Higgs-boson loops contribute to the W and Z masses.

where t2W ≡ tan2 θW . This one-loop correction depends quadratically on
the top-quark mass.

The Higgs boson also contributes to ∆r via the one-loop diagrams in
Fig. 3:

(∆r)Higgs ≈
11GFM

2
Zc

2
W

24
√

2π2
ln
m2

h

M2
Z

, (28)

where c2W ≡ cos2 θW . This one-loop correction depends only logarithmi-
cally on the Higgs-boson mass, so ∆r is not nearly as sensitive to mh as
it is to mt.

Due to the contributions of the top quark and the Higgs boson to ∆r,
in order to predict MW at one loop via Eq. (26) we need not just α, GF ,
MZ , but also mt and mh. Turning this around, in order to predict mh,
we need α, GF , MZ , and mt, MW . Thus a precision measurement of mt

and MW can be used to predict the Higgs mass.
I show in Fig. 4 a plot of MW vs. mt, indicating lines of constant

Higgs mass.6 The dashed ellipse indicates the 68% CL measurements of
MW and mt,

MW = 80.451(33) GeV

mt = 174.3(5.1) GeV

(I will return to the solid ellipse momentarily). As you can see, the direct
measurements of MW and mt favor a light Higgs boson.

Exercise 2.3 (∗ ∗ ∗) - Derive the slope of the lines of constant Higgs
mass on the plot of MW vs. mt. Evaluate it numerically and compare
with the plot. [Hint: Derive dM2

W /dm2
t and then evaluate dMW /dmt =

(mt/MW )dM2
W /dm2

t numerically. Be careful to use Eq. (24) for s2W in
Eq. (26) (you can neglect the dependence of t2W on MW in Eq. (27) since
(∆r)top is a small correction).]

6The small arrow labeled ∆α in that plot indicates the uncertainty in the lines of constant
Higgs mass due to the uncertainty in α(MZ ).
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Figure 4. Lines of constant Higgs mass on a plot of MW vs. mt. The
dashed ellipse is the 68% CL direct measurement of MW and mt. The solid el-
lipse is the 68% CL indirect measurement from precision electroweak data. From
http://lepewwg.web.cern.ch/LEPEWWG/.

Neutral current – Rather than using the direct measurements of MW

and mt to infer the Higgs-boson mass, one can use other electroweak
quantities. The Fermi constant, GF , is extracted from muon decay,
which is a charged-current weak interaction. That leaves the neutral-
current weak interaction as another quantity of interest. There is an
enormous wealth of data on neutral-current weak interactions, such as
e+e− annihilation near the Z mass, νN and eN deep-inelastic scattering,
νe elastic scattering, atomic parity violation, and so on [2].

Let’s consider a simple and very relevant example, the left-right asym-
metry in e+e− annihilation near the Z mass, shown in Fig. 5. Left and
right refer to the helicity of the incident electron, either negative (left)
or positive (right). The asymmetry is defined in terms of the total cross
section for a negative-helicity or positive-helicity electron to annihilate
with an unpolarized positron and produce a Z boson,

ALR ≡ σL − σR

σL + σR



e-

e+

Z

⇐
⇒

L
R

= −i g
cW

γµ(ge
V − γ5 g

e
A)

Figure 5. Neutral-current coupling of an electron to the Z boson. A left-handed
electron has negative helicity, a right-handed electron has positive helicity.

=
2ge

V g
e
A

ge2
V + ge2

A

, (29)

where

ge
V =

√
ρe

(

−1

2
+ 2κes

2
W

)

ge
A =

√
ρe

(

−1

2

)

(30)

are the vector and axial-vector couplings of the electron to the Z boson.
At tree level, ρe = κe = 1, but there are one-loop corrections. The
correction quadratic in the top-quark mass is

(ρe)top ≈ 1 +
3GFm

2
t

8
√

2π2

(κe)top ≈ 1 +
3GFm

2
t

8
√

2π2

1

t2W
. (31)

Different neutral-current measurements have different dependencies
on mt and mh, so by combining two or more measurements one can
extract both mt and mh. The solid ellipse in Fig. 4 represents the 68%
CL constraint from all neutral-current measurements combined. It is
in good agreement with the direct measurements of MW and mt, and
strengthens the case for a light Higgs boson. Combining all precision
electroweak data, one finds 45 GeV ≤ mh ≤ 191 GeV [2].

Historically, neutral-current data were used to successfully predict
the top-quark mass several years before it was discovered. This is a
good reason to trust the prediction of a light Higgs boson from precision
electroweak analyses.



It is also significant that the two ellipses in Fig. 4 lie on or near the lines
of constant Higgs mass (within the allowed range of the Higgs mass).
These measurements could have ended up far from those lines, thereby
disproving the existence of the hypothetical Higgs boson. Instead, these
measurements bolster our belief in the standard model in general, and
in the Higgs boson in particular.

MS scheme – Before we leave this topic, let’s discuss the other most
often-used definition of sin2 θW . This is the minimal-subtraction-bar
(MS) scheme, so-called due to the simple way in which ultraviolet diver-
gences in loop diagrams are subtracted.

Exercise 2.4 (∗) - Show that

sin2 θW =
g′2

g2 + g′2
(32)

at tree level.

The MS scheme promotes this to the definition of sin2 θW :

ŝ2Z ≡ g′2(MZ)

g2(MZ) + g′2(MZ)
(33)

where the gauge couplings are evaluated at the Z mass. Its numerical
value is ŝ2Z = 0.23113(15).

The analogues of Eqs. (26) and (24) in the MS scheme are

M2
W =

πα√
2GF

ŝ2Z(1 − ∆r̂W )
(34)

M2
Z =

M2
W

ĉ2Z ρ̂
. (35)

Unlike its on-shell analogue ∆r, the one-loop quantity ∆r̂W has no
quadratic dependence on the top-quark mass. This appears instead in
the quantity ρ̂ (which is unity in the on-shell scheme):

ρ̂ ≈ 1 +
3GFm

2
t

8
√

2π2
. (36)

Although the quadratic dependence on the top-quark mass has been
shifted from one relation to another, the physical predictions, such as
the constraint on the Higgs mass, remain unchanged.

Exercise 2.5 (∗ ∗ ∗) - Repeat Exercise 2.3 in the MS scheme. [Note that
ŝ2Z depends on MW via Eq. (35).]



3. Top Strong Interactions

We now begin to discuss the study of the top quark itself. In the
introduction we listed several reasons why the top quark is an interesting
object to study. The strategy that follows from these motivations is to
get to know the top quark by measuring everything we can about it, and
comparing with the predictions of the standard model. This program
will occupy a large portion of our efforts at the Fermilab Tevatron and
the CERN Large Hadron Collider (LHC). In this section I discuss some
of the measurements that can be made at these machines related to the
strong interactions of the top quark, and in the next section I turn to
its weak interactions.

The top quark is produced at hadron colliders primarily via the strong
interaction. The Feynman diagrams for the two contributing subpro-
cesses, quark-antiquark annihilation and gluon fusion, are shown in
Fig. 6. In Table 3 I give the predicted cross sections, at next-to-leading-
order (NLO) in QCD, for mt = 175 GeV. I also show the percentage
of the cross section that results from each of the two subprocesses. At
the Tevatron, the quark-antiquark-annihilation subprocess dominates;
at the LHC, gluon fusion reigns. To understand why this is, we need to
discuss the parton model of the proton.

The parton model is shown schematically in Fig. 7, where I illustrate
how a proton-antiproton collision results in a tt̄ pair produced via the
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Figure 6. Top-quark production via the strong interaction at hadron colliders pro-
ceeds through quark-antiquark annihilation (upper diagram) and gluon fusion (lower
diagrams).



Table 3. Cross sections, at next-to-leading-order in QCD, for top-quark production
via the strong interaction at the Tevatron and the LHC [5]. Also shown is the percent-
age of the total cross section from the quark-antiquark-annihilation and gluon-fusion
subprocesses.

σNLO (pb) qq̄ → tt̄ gg → tt̄

Tevatron (
√

s = 1.8 TeV pp̄) 4.87 ± 10% 90% 10%
Tevatron (

√
s = 2.0 TeV pp̄) 6.70 ± 10% 85% 15%

LHC (
√

s = 14 TeV pp) 803 ± 15% 10% 90%

quark-antiquark-annihilation subprocess. The proton is regarded as a
collection of quarks, antiquarks, and gluons (collectively called partons),
each carrying some fraction x of the proton’s four-momentum. Figure 7
shows a proton of four-momentum P1 colliding with an antiproton of
four-momentum P2.

Exercise 3.1 (∗) - Show that

S ≡ (P1 + P2)
2 ≈ 2P1 · P2 (37)

(neglecting the proton mass) is the square of the total energy in the
center-of-momentum frame.

The quark is carrying fraction x1 of the proton’s four-momentum, the
antiquark fraction x2 of the antiproton’s four-momentum. The square
of the total energy of the partonic subprocess (in the partonic center-of-
momentum frame) is similarly

ŝ ≡ (x1P1 + x2P2)
2 ≈ 2x1x2P1 · P2 = x1x2S . (38)

P1

P2

t

t

x1P1

x2P2

Figure 7. The parton-model description of top-quark pair production. A quark
carrying fraction x1 of the proton’s momentum P1 annihilates with an antiquark
carrying fraction x2 of the antiproton’s momentum P2.
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Figure 8. Parton distribution functions at the scale µ = mt, relevant for top-quark
production.

Since there has to be at least enough energy to produce a tt̄ pair at rest,
ŝ ≥ 4m2

t . It follows from Eq. (38) that

x1x2 =
ŝ

S
≥ 4m2

t

S
. (39)

Since the probability of finding a quark of momentum-fraction x in the
proton falls off with increasing x, the typical value of x1x2 is near the
threshold for tt̄ production. Setting x1 ≈ x2 = x in Eq. (39) gives

x ≈ 2mt√
S

(40)

as the typical value of x for tt̄ production.
Figure 8 shows the parton distribution functions in the proton for

all the different species of partons.7 The probability of finding a given
parton species with momentum fraction between x and x+dx is f(x)dx.
[What is plotted in Fig. 8 is actually xf(x)]. The parton distribution
functions also depend on the relevant scale of the process, µ, which for
top-quark production is of order mt.

7I will explain in Section 4 the presence of antiquarks in the proton, as well as strange, charm,
and bottom quarks.



The typical value of x for top-quark production may be computed
from Eq. (40). For the typical value of x at the Tevatron, x ≈ 0.18, the
up distribution function is larger than that of the gluon, and the down
distribution function is comparable to it. This explains why quark-
antiquark annihilation dominates at the Tevatron. In contrast, for the
typical value of x at the LHC, x ≈ 0.025, the gluon distribution function
is much larger than those of the quarks; this explains why gluon fusion
reigns at the LHC.

Higgs and top – I mentioned in the introduction that the top quark
could be used to discover the Higgs boson. To derive the coupling of the
Higgs boson to fermions, write the Higgs-doublet field as

φ =

(

0
1√
2
(v + h)

)

(41)

where h is the Higgs boson, which corresponds to oscillations about the
vacuum-expectation value of the field, Eq. (7). Inserting this expression
for φ into the Yukawa Lagrangian, Eq. (9), yields the desired coupling,
shown in Fig. 9.

Exercise 3.2 (∗ ∗ ∗) - Show that the coupling of the Higgs boson to
fermions is as given in Fig. 9. [Hint: Recall M ij = Γijv/

√
2, Eq. (13).]

The Feynman diagrams for Higgs-boson production in association
with a tt̄ pair are the same as those of Fig. 6, but with a Higgs boson
attached to the top quark or antiquark. The Higgs boson can also be
produced by itself via its coupling to a virtual top-quark loop, as shown
in Fig. 10. Remarkably, this is the largest source of Higgs bosons at the
Tevatron or the LHC. It is amusing that the virtual top quark points to
the existence of a light Higgs boson, as discussed in the previous section,
and may also help us discover the Higgs boson.

f

f

h = −i
mf

v

Figure 9. The coupling of the Higgs boson to fermions.
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Figure 10. Higgs-boson production via gluon fusion through a top-quark loop.

Top-quark spin – One of the remarkable features of the top quark is
that it is the only quark whose spin is directly observable. This is a
consequence of its very short lifetime, Γ−1

t ≈ (1.5 GeV)−1. Figure 11
shows an example of the evolution of a heavy quark of a definite spin
after it is produced in a hard-scattering collision. On a time scale of order
Λ−1

QCD ≈ (200MeV)−1, the heavy quark picks up a light antiquark of the
opposite spin from the vacuum and hadronizes into a meson. Some time
later, on the order of (Λ2

QCD/mQ)−1 ≈ (1 MeV)−1 (for mQ = mt), the

spin-spin interaction between the heavy quark and the light quark8 cause
the meson to evolve into a spin-zero state, (|↑↓〉− |↓↑〉)/

√
2, thereby

depolarizing the heavy quark [6]. The top quark is the only quark that
decays before it has a chance to depolarize (or even hadronize), so its
spin is observable in the angular distribution of its decay products.9

Let’s discuss the spin of a fermion in some detail. For a moving
fermion, it is conventional to use the helicity basis, in which the spin
quantization axis is the direction of motion of the fermion. The free

8This is the QCD analogue of the spin-spin interaction that produces the hyperfine splitting
in atomic physics.
9Actually, the spin of a long-lived heavy quark is observable if it hadronizes into a baryon,
such as a Λb.

⇒ ⇒ ⇒ ⇐

⇐ ⇐ ⇒
Q

q

Figure 11. A heavy quark hadronizes with a light quark of the opposite spin, then
evolves into a spin-zero meson.



fermion field may be decomposed into states of definite four-momentum,

ψ(x) =

∫

d3p

(2π)3
√

2E

∑

λ=±
(aλ

puλ(p)e−ip·x + bλ†p vλ(p)eip·x) , (42)

where the sum is over positive and negative helicity, aλ
p and bλ†p are the

annihilation and creation operators for a fermion and an antifermion,
and uλ(p) and vλ(p) are the momentum-space spinors for a fermion and
an antifermion. These spinors are given explicitly in Table 4, in the
representation where the Dirac matrices are [7]

γ0 =

(

0 1
1 0

)

γi =

(

0 σi

−σi 0

)

γ5 =

( −1 0
0 1

)

, (43)

where each entry in the above matrices is itself a 2 × 2 matrix.
We used the concept of chirality when formulating the standard model

in Section 1. In the representation of the Dirac matrices given above,

ψL ≡ 1 − γ5

2
ψ =

(

1 0
0 0

)

ψ (44)

ψR ≡ 1 + γ5

2
ψ =

(

0 0
0 1

)

ψ (45)

so a left-chiral spinor has nonzero upper components and a right-chiral
spinor has nonzero lower components. Chirality is conserved in gauge in-
teractions because the matter Lagrangian, Eq. (2), connects fields of the
same chirality. In the massless limit, helicity and chirality are related,

Table 4. Spinors for a fermion of energy E and three-momentum of magnitude p
pointing in the (θ, φ) direction. The spinors uλ(p) and vλ(p) correspond to fermions
and antifermions of helicity λ 1

2
.

u+(p) =









√
E − p

(

cos θ
2

eiφ sin θ
2

)

√
E + p

(

cos θ
2

eiφ sin θ
2

)









u
−

(p) =









√
E + p

(

sin θ
2

−eiφ cos θ
2

)

√
E − p

(

sin θ
2

−eiφ cos θ
2

)









v+(p) =









√
E + p

(

−e−iφ sin θ
2

cos θ
2

)

−√
E − p

(

−e−iφ sin θ
2

cos θ
2

)









v
−

(p) =









√
E − p

(

e−iφ cos θ
2

sin θ
2

)

−√
E + p

(

e−iφ cos θ
2

sin θ
2

)
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Figure 12. Helicity is conserved for massless quarks involved in a gauge interaction.

because the factor
√
E − p vanishes in the expressions for the spinors in

Table 4, causing either the upper or lower components to vanish:

u+(p) = uR(p) u−(p) = uL(p)

v+(p) = vL(p) v−(p) = vR(p) (46)

Note that the relationship between helicity and chirality is reversed for
fermions and antifermions.

For massless fermions, chirality conservation implies helicity conser-
vation, as shown in Fig. 12. For massive fermions, helicity is no longer
related to chirality, so although chirality is conserved, helicity is not.
This is illustrated in Fig. 13. Both helicity-conserving and helicity-
nonconserving gauge interactions occur; the latter are proportional to
the fermion mass, since they are forbidden in the massless limit.

Exercise 3.3 (∗) - Do the quark mass terms in LM , Eq. (12), conserve
chirality?

A useful discrete symmetry of QCD is parity, x → −x, p → −p.

Q

Q

g

⇒ ⇒
Q

Q

g

⇒ ⇐
∼ m

Figure 13. For massive quarks, there are helicity-conserving and nonconserving
gauge interactions. The amplitude for the latter is proportional to the quark mass.
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Figure 14. Parity and rotational symmetry are used to show that the top quark is
produced unpolarized in (unpolarized) pp̄ collisions.

Helicity flips under parity, because although spin does not flip,10 the
direction of motion of the fermion does. One can show that the spinors
of Table 4 are related to each other under parity as follows:

u−(p) = γ0u+(p̃)

v−(p) = γ0v+(p̃) (47)

where p = (E,p), p̃ = (E,−p). This demonstrates that parity flips the
helicity.

Parity can be used to show that top quarks are produced unpolar-
ized in QCD reactions. Let’s consider the quark-antiquark-annihilation
subprocess, for example; a similar argument can be given for the gluon-
fusion subprocess. In Fig. 14 I show a quark and an antiquark of opposite
helicity annihilating to produce a top quark and a top antiquark of op-
posite helicity. (Due to helicity conservation in the massless limit, the

10Spin angular momentum, like orbital angular momentum (L = x × p), does not change
sign under parity.
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Figure 15. The cross section for opposite-helicity tt̄ production is greater than that
for same-helicity tt̄ production.

helicities of the light quark and antiquark must be opposite; this is not
true of the top quark and antiquark.) Applying a parity transformation
to this reaction yields the second diagram in Fig. 14. Rotating this figure
by 180◦ in the scattering plane yields the third diagram, which is the
same as the first diagram but with all helicities reversed. Since parity is
a symmetry of QCD, the rates for the first and third reactions are the
same. The light quarks are unpolarized in (unpolarized) pp̄ collisions,
so the first and third reactions will occur with equal probabilities. The
first reaction produces positive-helicity top quarks, the second negative-
helicity top quarks. Thus top quarks are produced with positive and
negative helicity with equal probability, i.e., they are produced unpolar-
ized.

However, there is another avenue open to observe the spin of the top
quark. Although the top quark is produced unpolarized, the spin of the
top quark is correlated with that of the top antiquark. This is shown in
Fig. 15; the rate for opposite-helicity tt̄ production is greater than that
of same-helicity tt̄ production.

Exercise 3.4 (∗) - Argue that in the limit E � m, the correlation between
the helicities of the top quark and antiquark is 100%.

There is a special basis in which the correlation is 100% for all energies,
dubbed the “off-diagonal” basis [8]. This basis is shown in Fig. 16.
Rather than using the direction of motion of the quarks as the spin
quantization axis, one uses another direction, which makes an angle ψ
with respect to the beam, related to the scattering angle θ by

tanψ =
β2 sin θ cos θ

1 − β2 sin2 θ
, (48)
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Figure 16. The “off-diagonal” basis. The spins of the top quark and antiquark
point in the same direction.

where β is the velocity of the top quark and antiquark in the center-
of-momentum frame. When the spin is projected along this axis, the
correlation is 100%; the spins of the top quark and antiquark point in
the same direction along this axis.

The moral of this story is that, for massive fermions, there is nothing
special about the helicity basis. We will see this again in the next section
on the weak interaction. The spin correlation between top quarks and
antiquarks should be observed for the first time in Run II of the Tevatron.

Exercise 3.5 (∗) - Use Eq. (48) to show that in the limit E � m, the
off-diagonal basis is identical to the helicity basis. Argue that this had
to be the case. [Hint: See Exercise 3.4.]

Exercise 3.6 (∗∗∗) - What is the off-diagonal basis at threshold (E = m)?
Give a physics argument for this basis at threshold.

4. Top Weak Interactions

In this section I discuss the charged-current weak interaction of the
top quark, shown in Fig. 17. This interaction connects the top quark
with a down-type quark, with an amplitude proportional to the CKM
matrix element Vtq (q = d, s, b). The interaction has a vector-minus-
axial-vector (V −A) structure because only the left-chiral component of
the top quark participates in the SU(2) gauge interaction (see Table 1).

The charged-current weak interaction is responsible for the rapid de-
cay of the top quark, as shown in Fig. 18. The partial width into the
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Figure 17. Charged-current weak interaction of the top quark.

final state Wq is proportional to |Vtq|2.11 The CDF Collaboration has
measured [9]

BR(t→Wb)

BR(t→Wq)
= 0.94+0.31

−0.24

=
|Vtb|2

|Vtd|2 + |Vts|2 + |Vtb|2
(49)

This implies that |Vtb| � |Vtd|, |Vts|, but it does not tell us the absolute
magnitude of Vtb.

Exercise 4.1 (∗) - Show that the denominator of the last expression in
Eq. (49) is unity if one assumes that there are just three generations.

Thus, if we assume three generations, Eq. (49) implies |Vtb| = 0.97+0.16
−0.12.

However, we already know Vtb = 0.9990 − 0.9993 if there are just three
generations [2].

11The W boson then goes on to decay to a fermion-antifermion pair.

t

q

W

Figure 18. Top-quark decay via the charged-current weak interaction.
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Figure 19. Single-top-quark production via the weak interaction. The first diagram
corresponds to the s-channel subprocess, the second to the t-channel subprocess, and
the third to Wt associated production (only one of the two contributing diagrams is
shown).

Single top – The magnitude of Vtb can be extracted directly by measur-
ing the cross section for top-quark production via the weak interaction.
There are three such processes, depicted in Fig. 19, all of which result
in a single top quark rather than a tt̄ pair [10]. The cross sections for
these single-top processes are proportional to |Vtb|2.

The first subprocess in Fig. 19, which is mediated by the exchange of
an s-channel W boson, is analogous to the Drell-Yan subprocess. The
second subprocess is simply the first subprocess turned on its side, so the
W boson is in the t channel. The b quark is now in the initial state, so
this subprocess relies on the b distribution function in the proton, which
we will discuss momentarily.12 In the third subprocess, the W boson is
real, and is produced in association with the top quark. This subprocess
is also initiated by a b quark. The s- and t-channel subprocesses should
be observed for the first time in Run II of the Tevatron; associated
production of W and t must await the LHC.

The cross sections for these three single-top processes are given in Ta-
ble 5 at the Tevatron and the LHC. The largest cross section at both ma-

12If one instead uses a d or s quark in the initial state, the cross section is much less due to
the CKM suppression.

Table 5. Cross sections (pb), at next-to-leading-order in QCD, for top-quark pro-
duction via the weak interaction at the Tevatron and the LHC [11, 12, 13].

s channel t channel Wt

Tevatron (
√

s = 2.0 TeV pp̄) 0.90 ± 5% 2.1 ± 5% 0.1 ± 10%
LHC (

√
s = 14 TeV pp) 10.6 ± 5% 250 ± 5% 75 ± 10%
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Figure 20. When the b̄ is produced at high transverse momentum, the leading-order
process for t-channel single-top production is W -gluon fusion.

chines is from the t-channel subprocess; it is nearly one third of the cross
section for tt̄ pair production via the strong interaction (see Table 3).
The next largest cross section at the Tevatron is from the s-channel
subprocess. This is the smallest of the three at the LHC, because it is
initiated by a quark-antiquark collision. As is evident from Fig. 8, the
light-quark distribution functions grow with decreasing x more slowly
than the gluon or b distribution functions, so quark-antiquark annihila-
tion is relatively suppressed at the LHC. For a similar reason, associated
production of W and t (which is initiated by a gluon-b collision) is rela-
tively large at the LHC, while it is very small at the Tevatron.

Let’s consider the largest of the three processes, t-channel single-top
production, in more detail. This process was originally dubbed W -gluon
fusion [14], because it was thought of as a virtual W striking a gluon to
produce a tb̄ pair, as shown in Fig. 20. If the b̄ in the final state is at high
transverse momentum (pT ), this is indeed the leading-order diagram for
this process. If we instead integrate over the pT of the b̄, we obtain an
enhancement from the region where the b̄ is at low pT , nearly collinear
with the incident gluon.

Exercise 4.2 (∗∗) - Show that a massless quark propagator blows up in
the collinear limit, as shown in Fig. 21.

The b mass regulates the collinear divergence, such that the resulting
cross section is proportional to αS ln(m2

t /m
2
b), where the weak couplings

are tacit.
This collinear enhancement is desirable — it yields a larger cross sec-

tion — but it also makes perturbation theory less convergent. Each
emission of a collinear gluon off the internal b quark produces another
power of αS ln(m2

t/m
2
b), because it yields another b propagator that is
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Figure 21. When a gluon splits into a real antiquark and a virtual quark, the quark
propagator becomes singular when the kinematics are collinear.

nearly on-shell, as shown in Fig. 22. The result is that the expansion
parameter for perturbation theory is αS ln(m2

t/m
2
b), rather than αS [12].

Fortunately, there is a simple solution to this problem. The collinear
logarithms that arise are exactly the ones that are summed to all orders
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations.
In order to sum these logarithms, one introduces a b distribution function
in the proton. When one calculates t-channel single-top production using
a b distribution function, as in the second diagram in Fig. 19, one is
automatically summing these logarithms to all orders. The expansion
parameter for perturbation theory is now simply αS [15].

Figure 23 shows how the b distribution function in the proton arises
from a gluon splitting into a (virtual) bb̄ pair. The strange and charm
distributions arise in the same way; this also explains the presence of
up and down antiquarks in the proton (see Fig. 8). Unlike the other
“sea” quark distributions, which are extracted from experiment, the b
distribution function is calculated from the initial condition b(x) = 0 at
µ = mb, and is evolved to higher µ via the DGLAP equations.
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Figure 22. The emission of collinear gluons is suppressed only by αS ln(m2
t/m2

b),
rather than αS .



Figure 23. The quark “sea” in the proton arises from loops of virtual quarks.

Exercise 4.3 (∗∗) - Draw the leading-order Feynman diagrams for the
subprocesses that contribute to

(a) pp̄→W +X

(b) pp̄→W + 1 jet +X

where X denotes the remnants of the proton and antiproton.

Top-quark spin – In the previous section we studied the top-quark
spin in the context of the strong interaction. Let’s now consider this
topic in relation to the weak interaction, beginning with the decay of
the top quark.

The top-quark decay to the final state b¯̀ν is depicted in Fig. 24.

Exercise 4.4 (∗∗) Determine the helicities of all final-state particles in
top decay (neglecting their masses).

The partial width for this decay, summed over the two spin states of the
top quark, is given by a very simple formula:

dΓ ∼
∑

spin

|M|2 ∼ t · `b · ν , (50)

where the four-momentum of the fermion or antifermion is denoted by its
label. To undo the sum over the top-quark spin, it is useful to decompose

t

b

W ν

l

Figure 24. Semileptonic top-quark decay.



the four-momentum of the top quark, t, into two lightlike four vectors,

t = t1 + t2 (51)

t1 =
1

2
(t+ms) (52)

t1 =
1

2
(t−ms) (53)

where s is the spin four-vector. In the top-quark rest frame, the spin
four-vector is s = (0, ŝ), where ŝ is a unit vector that defines the spin
quantization axis of the top quark.

Exercise 4.5 (∗) - Show that t1 and t2 are lightlike four-vectors, t21 =
t22 = 0.

In the top-quark rest frame, the spatial components of t1 point in
the spin-up direction, while the spatial components of t2 point in the
spin-down direction. The partial widths for the decay of these two spin
states are

dΓ↑ ∼ t2 · `b · ν
dΓ↓ ∼ t1 · `b · ν . (54)

Note that Eq. (50) is the sum of these two partial widths, as expected.
Let’s consider the decay of a top quark with spin up along the ŝ

direction in its rest frame, as depicted in Fig. 25. In this frame, the
spatial components of t2 point in the −ŝ direction. Hence

dΓ↑ ∼ t2 · ` ∼ 1 + cos θ , (55)

s

〈

l

t

t1

t2

⇒

θ

Figure 25. Semileptonic top-quark decay in the top rest frame. The vector ŝ indi-
cates the spin-quantization axis. The four-vectors t1 and t2 have spatial components
that point in the spin up and down directions, respectively.
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Figure 26. In single-top production, the top-quark spin is polarized along the di-
rection of the d̄ quark in the top rest frame.

where θ is the angle between the spin direction and the charged-lepton
three-momentum (see Fig. 25).

Exercise 4.6 (∗) - Confirm Eq. (55).

Thus
dΓ↑
d cos θ

∼ 1 + cos θ , (56)

which means that the charged lepton in top decay tends to go in the
direction of the top-quark spin. In fact, the charged lepton is the most
efficient analyzer of the top-quark spin, via the angular distribution of
Eq. (56) [16].

We can use these same formulas to analyze the top-quark spin in
single-top production [17, 18]. The Feynman diagram for the s-channel
subprocess, Fig. 19, is the same as that for top-quark decay, Fig. 24,
with the replacement ν → u, ¯̀→ d̄. Thus

dσ↑ ∼ t2 · db · u
dσ↓ ∼ t1 · db · u (57)

from Eqs. (54). If we choose the spin-quantization axis to point in the
direction of the d̄ (in the top-quark rest frame), then t1 ∼ d, and the
latter cross section above vanishes. Thus the top-quark is 100% polarized
in the direction of the d̄ (in the top-quark rest frame) in s-channel single-
top production, as depicted in Fig. 26. This result holds true for t-
channel single-top production as well, since it proceeds via the same
Feynman diagram, just turned on its side.

Although the top quark is 100% polarized when produced via the
weak interaction, it is not in a state of definite helicity. Just as we saw



in the previous section, there is nothing special about helicity for massive
fermions. It may be possible to observe the polarization of single top
quarks in Run II of the Tevatron.

Exercise 4.7 (∗ ∗ ∗) - Show that in the limit E � m, the top quark has
negative helicity when produced via the s- or t-channel subprocesses, as
expected.
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Solutions to the exercises

Section 1

Exercise 1.1 – It is easiest to show this using index-free notation.
Write the first term in the Lagrangian of Eq. (2) as

iQ̄i
L 6DQi

L = iQ†
Lγ

0 6DQL , (58)

where QL is a 3-component vector in generation space. This term is
invariant under the transformation QL → UQL

QL, because the 3 × 3
unitary matrix UQL

commutes with the Dirac matrices (which are the
same for all three generations):

iQ†
Lγ

0 6DQL → iQ†
LU

†
QL
γ0 6DUQL

QL = iQ†
Lγ

0 6DQL , (59)

where I have used U †
QL
UQL

= 1. The same argument applies to the other
terms in the matter Lagrangian and their corresponding symmetries.

Exercise 1.2 – Consider the transformation of the first term in the
Yukawa Lagrangian, Eq. (9), under the symmetry UQL

of Eq. (5):

Q̄i
Lεφ

∗uj
R → Q̄i

LU
†
QL
εφ∗uj

R . (60)

This is not invariant under the symmetry transformation, so UQL
is

violated. In contrast, baryon number symmetry, Eq. (10), is respected:

Q̄i
Lεφ

∗uj
R → Q̄i

Le
−iθ/3εφ∗eiθ/3uj

R = Q̄i
Lεφ

∗uj
R . (61)

The same applies to the other terms in the Yukawa Lagrangian, and also
to lepton number, Eq. (11).



Exercise 1.3 – Consider the transformation of the Lagrangian of Eq. (16)
under the first field redefinition of Eq. (15) (using the index-free notation
introduced in the solution to Exercise 1.1):

LKE = iūL 6∂uL → iūLA
†
uL

6∂AuL
uL = iūL 6∂uL . (62)

The last step requires that AuL
be unitary, A†

uL
AuL

= 1. The same
argument applies to the other fermionic kinetic-energy terms in the La-
grangian.

Exercise 1.4 – If AuL
= AdL

, then we may combine the first two field
redefinitions in Eq. (15) into one equation:

Qi
L = Aij

QL
Q′j

L , (63)

where AQL
= AuL

= AdL
. This is exactly the symmetry UQL

of Eq. (5).
The field redefinitions of ui

R and di
R in Eq. (15) are the symmetries UuR

and UdR
of Eq. (5).

Exercise 1.5 – This follows from the definition of the CKM matrix,

V ≡ A†
dL
AuL

:

V †V = (A†
dL
AuL

)†A†
dL
AuL

= A†
uL
AdL

A†
dL
AuL

= 1 , (64)

where I have used the unitarity of the A matrices.

Exercise 1.6 – A useful equation to remember is h̄c = 197 MeV fm.
Using this, one can convert length to mass−1:

length = h̄c/mass c2 = mass−1 (65)

using h̄ = c = 1.

Exercise 1.7 – Such a term is not invariant under SU(3) gauge sym-
metry, QL → UQL, where U acts on the (suppressed) color indices of
the quarks:

QiT
L εφCφ

T εQj
L → QiT

L U
T εφCφT εUQj

L . (66)

This involves UTU , which is not equal to unity (rather, U †U = 1).
This term is also not invariant under U(1)Y , as the total hypercharge is
nonzero (1/6+1/6+1/2+1/2).

Exercise 1.8 – Lepton number, Eq. (11), is violated because

LiT
L εφCφ

T εLj
L → LiT

L e
iφεφCφT εeiφLj

L (67)

is not invariant. Recall that lepton number is an accidental symmetry
of the standard model. Once you go beyond the standard model by in-
cluding higher-dimension operators, there is no reason for lepton number



(and baryon number) to be conserved.

Exercise 1.9 – We’ll follow a similar argument as the one made to
count the number of parameters in the CKM matrix. The Yukawa ma-
trix Γe has 2×3×3 parameters, and the complex, symmetric matrix cij

has 2 × 6 parameters. The symmetries ULL
and UeR

contain 2 × 3 × 3
degrees of freedom, so the number of physically-relevant parameters is

2 × 3 × 3 + 2 × 6 − 2 × 3 × 3 = 12 . (68)

[Note that we did not remove lepton number from the symmetries, be-
cause lepton number is violated by L5, Eq. (21)]. Of these parame-
ters, six are the charged-lepton and neutrino masses, leaving six pa-
rameters for the MNS matrix. Three are mixing angles, and three are
CP -violating phases.

Section 2

Exercise 2.1 – Plug the expressions for α, GF , and MZ in terms of
g, g′, and v, given at beginning of Section 2, into Eq. (23) and carry
through the algebra to obtain M2

W = (1/4)g2v2.

Exercise 2.2 – Using Eq. (24), we can write Eq. (25) as

M2
W

(

1 − M2
W

M2
Z

)

=
πα√
2GF

. (69)

Solving this quadratic equation for M2
W yields Eq. (23). Alternatively,

one could plug the expressions for α, GF , and MZ in terms of g, g′, and
v, given at beginning of Section 2, as well as M2

W = (1/4)g2v2, into the
above equation to check its veracity.

Exercise 2.3 – Starting from Eq. (26), the one-loop analogue of Eq. (69)
is

M2
W

(

1 − M2
W

M2
Z

)

=

πα√
2GF

(1 − ∆r)
. (70)

The differential of this equation (with respect to M2
W and m2

t , keeping
everything else fixed) is

dM2
W − 2

M2
W

M2
Z

dM2
W = −

πα√
2GF

(1 − ∆r)2
3GF dm

2
t

8
√

2π2

1

t2W
, (71)

where I have used Eq. (27) for ∆r. We can now set ∆r = 0 to leading-
order accuracy, and solve for dM2

W /dm2
t :

dM2
W

dm2
t

=
3α

16π

1

(2c2W − 1)t2W
, (72)



where I’ve used Eq. (24). Using dMW /dmt = (mt/MW )dM2
W /dm2

t and
evaluating numerically (for MW = 80 GeV, mt = 175 GeV) gives a slope
of 0.0060, in good agreement with the slope of the lines of constant Higgs
mass in Fig. 4.

Exercise 2.4 – The desired result follow from insertingM2
W = (1/4)g2v2

and M2
Z = (1/4)(g2 + g′2)v2 [Eq. (8)] into the on-shell definition of

sin2 θW , Eq. (24).

Exercise 2.5 – Combining Eqs. (34) and (35) to eliminate ŝ2Z gives

M2
W

(

1 − M2
W

M2
Z ρ̂

)

=

πα√
2GF

(1 − ∆r̂W )
. (73)

The differential of this equation is

dM2
W − 2

M2
W

M2
Z ρ̂
dM2

W +
M4

W

M2
Z ρ̂

2

3GF dm
2
t

8
√

2π2
= 0 , (74)

where I have used Eq. (35) for ρ̂ (there is no mt dependence in ∆r̂W ).
We can now set ρ̂ = 1 to leading-order accuracy. Using the leading-
order expressions of Eq. (25) and M2

W /M2
Z = c2W , it is easy to show that

Eq. (74) is identical Eq. (71) at leading order.

Section 3

Exercise 3.1 – The four-momenta of the quark and antiquark in the
center-of-momentum frame are

P1 = (E, 0, 0, p)

P2 = (E, 0, 0,−p) .
Thus S ≡ (P1 + P2)

2 = (2E, 0, 0, 0)2 = (2E)2, which is the square of
the total energy of the collision. The last expression in Eq. (37) follows
from (P1 +P2)

2 = P 2
1 +P 2

2 +2P1 ·P2 ≈ 2P1 ·P2, if we neglect the proton
mass, P 2

1 = P 2
2 = m2

p.

Exercise 3.2 – Inserting Eq. (41) into the second term in the Yukawa
Lagrangian, Eq. (9), yields

LY = −Γij
d

1√
2
(v + h)d̄i

Ld
j
R + h.c. (75)

(analogous results are obtained for the other terms in the Lagrangian).
Using Eq. (13), this can be written

LY = −M ij
d

(

1 +
h

v

)

d̄i
Ld

j
R + h.c. (76)



The field redefinitions that diagonalize the mass matrix, Eq. (15), will
therefore also diagonalize the couplings of the fermions to the Higgs bo-
son. The coupling to a given fermion is thus given by −mf/v (times a
factor i since the Feynman rules come from iL), as shown in Fig. 9.

Exercise 3.3 – The answer is evidently no, since these terms connect
fields of different chirality.

Exercise 3.4 – In the ultrarelativistic limit, E � m, the mass of the
top quark is negligible. Since helicity is conserved for massless quarks,
the top quark and antiquark must be produced with opposite helicities.

Exercise 3.5 – In the limit E � m (β → 1), Eq. (48) implies ψ = θ,
which means that the off-diagonal and helicity bases are the same. This
is as expected, because in the massless limit the helicities of the top
quark and antiquark are 100% correlated (see Exercise 3.4), which is the
defining characteristic of the off-diagonal basis.

Exercise 3.6 – At threshold (β → 0), Eq. (48) implies ψ = 0, which
means that the top quark and antiquark spins are 100% correlated along
the beam direction. This is a consequence of angular-momentum con-
servation. At threshold, the top quark and antiquark are produced at
rest with no orbital angular momentum. The colliding light quark and
antiquark have no orbital angular momentum along the beam direction.
Thus spin angular momentum along the beam direction must be con-
served. The light quark and antiquark have opposite helicity (due to
helicity conservation in the massless limit), so the top quark and anti-
quark are produced with their spins pointing in the same direction along
the beam.

Section 4

Exercise 4.1 – This follows from the unitarity of the CKM matrix,
V V † = 1. Displaying indices, this may be written

VikV
†
kj = VikV

∗
jk = δij . (77)

For i = j, this implies
∑

k=d,s,b

|Vik|2 = 1 , (78)

which yields the desired result for i = t.

Exercise 4.2 – The square of the four-momentum of the quark prop-
agator in Fig. 21 is

p2 = (k − p′)2 = −2k · p′ (79)
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Figure 27. (a) Leading-order subprocess for W production. (b) Leading-order
subprocess for W + 1 jet production.

This vanishes for collinear kinematics,

k = (E, 0, 0, E)

p′ = (E′, 0, 0, E′) .

Thus the denominator of the quark propagator vanishes in the collinear
limit (if we neglect the quark mass).

Exercise 4.3 – (a) There is just one diagram, shown in Fig. 27(a). (b)
There are two contributing subprocesses, gq →Wq and qq̄ →Wg; each
consists of two Feynman diagrams, shown in Fig. 27(b) for gq → Wq.
The two diagrams for qq̄ → Wg may be obtained by radiating a gluon
off either fermion line in Fig. 27(a).

Exercise 4.4 – The charged-current weak interaction couples only to
left-chiral fields. Thus the fermions in the final state (b, ν) have negative
helicity, and the antifermion (¯̀) has positive helicity, due to the rela-
tionship between chirality and helicity for massless particles (discussed
in Section 3).

Exercise 4.5 – In the top-quark rest frame, s2 = (0, ŝ)2 = −1, since ŝ

is a unit vector. Because s2 is Lorentz invariant, this is true in all refer-
ence frames. Similarly, t ·s = 0, because t = (m, 0, 0, 0) in the top-quark
rest frame. Thus

t21 =
1

4
(t+ms)2 =

1

4
(m2 −m2 + 2mt · s) = 0 , (80)
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Figure 28. Single-top production in the ultrarelativistic limit, as viewed from the
top rest frame.

and similarly for t22.

Exercise 4.6 – The spatial part of the lightlike four-vector t2 is pointing
in the −ŝ direction. Thus t2 · ` ∼ 1− cosα, where α is the angle between
−ŝ and the direction of the charged lepton. This angle is supplementary
to θ (α+ θ = π), so t2 · ` ∼ 1 − cosα = 1 + cos θ.

Exercise 4.7 – The s-channel subprocess, in the top-quark rest frame,
looks like Fig. 26. In the limit E � m, this figure looks like Fig. 28;
the u and d̄ approach each other along a line and annihilate to make
a top quark at rest and a b̄ that carries off the incoming momentum.
As always, the top-quark spin points in the direction of the d̄. To view
this event from the center-of-momentum frame, one boosts opposite the
direction of motion of the u and d̄. This boosts the top quark in the
direction opposite its spin, so it is in a state of negative helicity. This
is as expected; in the limit E � m, the top quark acts like a massless
quark, and is therefore produced in a negative-helicity state by the weak
interaction (see Exercise 4.4).
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